hlmm Documentation

Release 1.2.0a1

Alexander Thomas Ian Strudwick Young

Dec 14, 2017

Contents:

1	Introduction	1
2	Tutorial	3
3	Documentation for 'block_sparse' module	5
4	Indices and tables	11
Py	thon Module Index	13

Introduction

block_sparse is a python library for performing computations with

Tutorial

Documentation for 'block_sparse' module

Documentation for the regrnd model class.

Define a block-sparse matrix

Parameters blocks: list

list of [row_block_boundaries,col_block_boundaries], where each of row_block_boundaries and col_block_boundaries is a 1D array of integers, beginning with 0, followed by the end boundaries of each block in increasing order

nonzero: array

boolean numpy array with number of rows equal to number of row blocks, and number of columns equal to number of col blocks. If entry [i,j] of nonzero is True, then the corresponding block is non-zero; if it is False, then the corresponding block is zero.

submatrices : list

list of submatrices for non-zero blocks in row-major order; e.g., block (1,1), (1,2), (2,1), (2,2),... Each submatrix can be an array, a *block_sparse* matrix, or a *symmetric_block_sparse* matrix.

dtype : numpy data type object

Set the default data type for the submatrices. Default float 32

row_names : array

numpy array with names of the row-blocks. Default None

col_names : array

numpy array with names of the col-blocks. Default None

Returns matrix : block_sparse

block-sparse matrix

Methods

add(A)	Matrix addition of a matrix A to current matrix					
dot(A)	Right	multiply	the	current	matrix	
	with	another	block_	_sparse	matrix,	
	symmetric_block_sparse matrix, or array, A.					
frobenius(A)	Compute the frobenius inner product between the cur-					
	rent matrix and matrix A					
get_submatrix(block)	Retrieve a particular block of the matrix					
get_type(block)	Retrieve the type of a particular block of the matrix					
norm()	Compute the frobenius norm of the current matrix					
form(y[, z]) Computes quadratic form defined by current mat				natrix and		
	input vectors.					
to_dense()	Return the current matrix as a standard (dense) numpy					
	array					
transpose()	Return the transpose of the block-sparse matrix					

$\operatorname{add}\left(A ight)$

Matrix addition of a matrix A to current matrix

Parameters A : matrix

matrix A with same dimensions as current matrix. The matrix A can be an array, block_sparse matrix, or symmetric_block_sparse matrix. It must have the same block structure as the current matrix if the matrix is a block_sparse matrix or symmetric_block_sparse matrix.

Returns block_sparse

the block-sparse matrix formed by matrix addition of the current matrix to A

dot(A)

Right multiply the current matrix with another *block_sparse* matrix, *symmetric_block_sparse* matrix, or array, A.

Parameters A : matrix

matrix A with compatible dimensions and block structure: i.e. the row blocks of A must match the column blocks of the current matrix, unless A is an array.

Returns block_sparse

the block-sparse matrix formed by right multiplication of the current matrix by A

frobenius (A)

Compute the frobenius inner product between the current matrix and matrix A

Parameters A : matrix

matrix A with same dimensions as current matrix. The matrix A can be an array, block_sparse matrix, or symmetric_block_sparse matrix. It must have the same block structure as the current matrix if the matrix is a block_sparse matrix or symmetric_block_sparse matrix.

$Returns \ {\tt float}$

the frobenius inner product between the current matrix and matrix A

get_submatrix(block)

Retrieve a particular block of the matrix

Parameters block : tuple

tuple (i,j) giving the index of the block

Returns block

either an array, a *block_sparse* matrix, or a *symmetric_block_sparse* matrix.

get_type (block)

Retrieve the type of a particular block of the matrix

Parameters block : tuple

tuple (i,j) giving the index of the block

Returns block type

either array, block_sparse, or symmetric_block_sparse.

norm()

Compute the frobenius norm of the current matrix

Returns float

the frobenius norm of the current matrix

qform (y, z=None)

Computes quadratic form defined by current matrix and input vectors. Let X be the current *block_sparse* matrix, and y and z column vectors. When it is defined, this computes the quadratic form y'Xz. If only y is provided, this computes the quadratic form y'Xy.

Parameters y: array

1D numpy array of same length as number of rows of current matrix

z [array] 1D numpy array of same length as number of rows of current matrix. Default None.

Returns float

the value of the quadratic form y'Xz

to_dense()

Return the current matrix as a standard (dense) numpy array

Returns array

transpose()

Return the transpose of the block-sparse matrix

Returns block_sparse

col_names=None)

Define a symmetric block-sparse matrix. Inherits some methods from block_sparse.

Parameters blocks: array

1D numpy integer array, starting at zero, followed by block boundaries, which are the same for both rows and columns

nonzero: array

symmetric boolean numpy array with number of rows equal to number of row blocks, which is equal to the number of col blocks. If entry [i,j] of nonzero is True, then the corresponding block is non-zero; if it is False, then the corresponding block is zero.

submatrices : list

list of submatrices for non-zero blocks in row-major order, ignoring lower-triangular blocks; e.g., block (1,1), (1,2), (2,2),... Each submatrix can be a array, a *block_sparse* matrix, or a *symmetric_block_sparse* matrix.

dtype : numpy data type object

Set the default data type for the submatrices. Default float 32

row_names: array

numpy array with names of the row-blocks. Default None

col_names : array

numpy array with names of the col-blocks. Default None

Returns symmetric_block_sparse

block-sparse matrix

Methods

add(A)	Matrix addition of a matrix A to current matrix.						
dot(A)	Right	multiply	the	current	matrix		
	with	another	block_	_sparse	matrix,		
	<pre>symmetric_block_sparse matrix, or arra</pre>				rray, A.		
frobenius(A)	Compute the frobenius inner product between the cur-						
	rent matrix and matrix A						
get_submatrix(block)	Retrieve a particular block of the matrix						
get_type(block)	Retrieve the type of a particular block of the matrix						
norm()	Compute the frobenius norm of the current matrix						
qform(y[, z])	Let X be the current symmetric_block_sparse						
	matrix, and y and z column vectors.						
to_dense()		Return the current matrix as a standard (dense) numpy					
	array						
transpose()	Return the transpose of the symmetric block-sparse ma-						
	trix						

$\mathbf{add}\left(A\right)$

Matrix addition of a matrix A to current matrix.

Parameters A : matrix

matrix A with same dimensions as current matrix. The matrix A can be a array, block_sparse matrix, or symmetric_block_sparse matrix. It must have the same block structure as the current matrix if the matrix is a block_sparse matrix or symmetric_block_sparse matrix.

Returns matrix

If A is symmetric_block_sparse, returns a symmetric_block_sparse ma-

trix. Otherwise, returns a *block_sparse* matrix.

get_submatrix(block)

Retrieve a particular block of the matrix

Parameters block : tuple

tuple (i,j) giving the index of the block

Returns block

either a array, a *block_sparse* matrix, or a *symmetric_block_sparse* matrix.

get_type (block)

Retrieve the type of a particular block of the matrix

Parameters block : tuple

tuple (i,j) giving the index of the block

Returns block type

either array, *block_sparse* matrix, or *symmetric_block_sparse* matrix.

qform (y, z=None)

Let X be the current *symmetric_block_sparse* matrix, and y and z column vectors. When it is defined, this computes the quadratic form y'Xz. If only y is provided, this computes the quadratic form y'Xy.

Parameters y: array

1D numpy array of same length as number of rows of current matrix

z [array] 1D numpy array of same length as number of rows of current matrix. Default None.

Returns float

the value of the quadratic form y'Xz

to_dense()

Return the current matrix as a standard (dense) numpy array

Returns array

transpose()

Return the transpose of the symmetric block-sparse matrix

Returns symmetric_block_sparse

the current matrix, as it is symmetric

block_sparse.matmul(X,A)

Matrix multiplication between *block_sparse* and *symmetric_block_sparse* matrices, as well as matrix multiplication between a *block_sparse* or *symmetric_block_sparse* matrix and an array.

Parameters X : matrix

The matrix X can be a *block_sparse* matrix, a *symmetric_block_sparse* matrix, or a array.

 \mathbf{A} : matrix

The matrix A can be a *block_sparse* matrix, a *symmetric_block_sparse* matrix, or a array. Note that the number of rows of A must match the number of columns of X. Furthermore, if X and A are both *block_sparse* or *symmetric_block_sparse*, then the column blocks of X must match the row blocks of A.

Returns block_sparse

the block-sparse matrix formed by matrix multiplication XA

block_sparse.dense_to_block_sparse (dense, blocks, symmetric, dtype=<type 'numpy.float64'>)
Convert a standard (dense) numpy array into a block_sparse or a symmetric_block_sparse matrix.
Note this simply imposes a block structure onto the matrix so that it can interact with other block matrices. It
does not take advantage of any sparsity in the input matrix.

Parameters dense : array

input matrix

- **blocks** [list] list of [row_block_boundaries,col_block_boundaries], where each of row_block_boundaries and col_block_boundaries is a 1D array of integers, beginning with 0, followed by the end boundaries of each block in increasing order
- symmetric [bool] if True, returns a symmetric_block_sparse matrix; if False, returns a block_sparse matrix

dtype [numpy data type] the default data type of the returned matrix

Returns matrix

the current matrix as a block_sparse or a symmetric_block_sparse matrix

Indices and tables

- genindex
- modindex
- search

Python Module Index

b

block_sparse,5

Index

Α

add() (block_sparse.block_sparse method), 6
add() (block_sparse.symmetric_block_sparse method), 8

В

block_sparse (class in block_sparse), 5 block_sparse (module), 5

D

dense_to_block_sparse() (in module block_sparse), 10
dot() (block_sparse.block_sparse method), 6

F

frobenius() (block_sparse.block_sparse method), 6

G

Μ

matmul() (in module block_sparse), 9

Ν

norm() (block_sparse.block_sparse method), 7

Q

S

symmetric_block_sparse (class in block_sparse), 7

Т

to_dense() (block_sparse.block_sparse method), 7

to_dense() (block_sparse.symmetric_block_sparse method), 9

transpose() (block_sparse.block_sparse method), 7

transpose() (block_sparse.symmetric_block_sparse method), 9