hlmm Documentation

Release 1.2.0a1

Alexander Thomas lan Strudwick Young

Contents:

1 Introduction 1
2 Tutorial 3
3 Documentation for 'block_sparse' module 5
4 Indices and tables 11
Python Module Index 13

Introduction

block_sparse is a python library for performing computations with
chapter 2

Tutorial

Chapter 3

Documentation for 'block_sparse' module

Documentation for the regrnd model class.
class block_sparse.block_sparse (blocks, nonzero, submatrices, dtype=<type 'numpy.float32’>, row_names $=$ None, col_names $=$ None)
Define a block-sparse matrix
Parameters blocks : list
list of [row_block_boundaries,col_block_boundaries], where each of row_block_boundaries and col_block_boundaries is a 1D array of integers, beginning with 0 , followed by the end boundaries of each block in increasing order
nonzero : array
boolean numpy array with number of rows equal to number of row blocks, and number of columns equal to number of col blocks. If entry $[i, j]$ of nonzero is True, then the corresponding block is non-zero; if it is False, then the corresponding block is zero.
submatrices: list
list of submatrices for non-zero blocks in row-major order; e.g., block $(1,1),(1,2)$, $(2,1),(2,2), \ldots$ Each submatrix can be an array, a block_sparse matrix, or a symmetric_block_sparse matrix.
dtype : numpy data type object
Set the default data type for the submatrices. Default float 32
row_names : array
numpy array with names of the row-blocks. Default None
col_names : array
numpy array with names of the col-blocks. Default None
Returns matrix : block_sparse
block-sparse matrix

Methods

add(A)	Matrix addition of a matrix A to current matrix
$\operatorname{dot}(\mathrm{A})$	Right multiply the current matrix with another block_sparse matrix, symmetric_block_sparse matrix, or array, A.
frobenius(A)	Compute the frobenius inner product between the current matrix and matrix A
get_submatrix(block)	Retrieve a particular block of the matrix
get_type(block)	Retrieve the type of a particular block of the matrix
norm()	Compute the frobenius norm of the current matrix
qform(y[, z])	Computes quadratic form defined by current matrix and input vectors.
to_dense()	Return the current matrix as a standard (dense) numpy array
transpose()	Return the transpose of the block-sparse matrix

add (A)
Matrix addition of a matrix A to current matrix
Parameters A : matrix
matrix A with same dimensions as current matrix. The matrix A can be an array, block_sparse matrix, or symmetric_block_sparse matrix. It must have the same block structure as the current matrix if the matrix is a block_sparse matrix or symmetric_block_sparse matrix.
Returns block_sparse
the block-sparse matrix formed by matrix addition of the current matrix to A
$\operatorname{dot}(A)$
Right multiply the current matrix with another block_sparse matrix, symmetric_block_sparse matrix, or array, A.

Parameters A: matrix
matrix A with compatible dimensions and block structure: i.e. the row blocks of A must match the column blocks of the current matrix, unless A is an array.

Returns block_sparse
the block-sparse matrix formed by right multiplication of the current matrix by A
frobenius (A)
Compute the frobenius inner product between the current matrix and matrix A
Parameters A : matrix
matrix A with same dimensions as current matrix. The matrix A can be an array, block_sparse matrix, or symmetric_block_sparse matrix. It must have the same block structure as the current matrix if the matrix is a block_sparse matrix or symmetric_block_sparse matrix.
Returns float
the frobenius inner product between the current matrix and matrix A
get_submatrix (block)
Retrieve a particular block of the matrix

Parameters block : tuple

tuple (i, j) giving the index of the block
Returns block
either an array, ablock_sparse matrix, or a symmetric_block_sparse matrix.
get_type (block)
Retrieve the type of a particular block of the matrix
Parameters block: tuple
tuple (i,j) giving the index of the block
Returns block type
either array, block_sparse, or symmetric_block_sparse.
norm ()
Compute the frobenius norm of the current matrix
Returns float
the frobenius norm of the current matrix
qform ($y, z=$ None)
Computes quadratic form defined by current matrix and input vectors. Let X be the current block_sparse matrix, and y and z column vectors. When it is defined, this computes the quadratic form $y^{\prime} \mathrm{Xz}$. If only y is provided, this computes the quadratic form $\mathrm{y}^{\prime} \mathrm{Xy}$.

Parameters y: array
1D numpy array of same length as number of rows of current matrix
\mathbf{z} [array] 1D numpy array of same length as number of rows of current matrix. Default None.

Returns float
the value of the quadratic form $y^{\prime} \mathrm{Xz}$
to_dense ()
Return the current matrix as a standard (dense) numpy array
Returns array
transpose ()
Return the transpose of the block-sparse matrix
Returns block_sparse
class block_sparse.symmetric_block_sparse (blocks, nonzero, submatrices, dtype=<type 'numpy.float 32 '>, row_names=None, col_names=None)
Define a symmetric block-sparse matrix. Inherits some methods from block_sparse.
Parameters blocks: array
1D numpy integer array, starting at zero, followed by block boundaries, which are the same for both rows and columns
nonzero: array
symmetric boolean numpy array with number of rows equal to number of row blocks, which is equal to the number of col blocks. If entry $[i, j]$ of nonzero is True, then the corresponding block is non-zero; if it is False, then the corresponding block is zero.
submatrices: list
list of submatrices for non-zero blocks in row-major order, ignoring lower-triangular blocks; e.g., block (1,1), (1,2), (2,2),... Each submatrix can be a array, a block_sparse matrix, or a symmetric_block_sparse matrix.
dtype : numpy data type object
Set the default data type for the submatrices. Default float 32
row_names : array
numpy array with names of the row-blocks. Default None
col_names : array
numpy array with names of the col-blocks. Default None
Returns symmetric_block_sparse
block-sparse matrix

Methods

add(A)	Matrix addition of a matrix A to current matrix.
$\operatorname{dot}(\mathrm{A})$	Right multiply the current matrix with another block_sparse matrix,
	symmetric_block_sparse matrix, or array, A.
frobenius(A)	Compute the frobenius inner product between the current matrix and matrix A
get_submatrix(block)	Retrieve a particular block of the matrix
get_type(block)	Retrieve the type of a particular block of the matrix
norm()	Compute the frobenius norm of the current matrix
qform(y[, z])	Let X be the current symmetric_block_sparse matrix, and y and z column vectors.
to_dense()	Return the current matrix as a standard (dense) numpy array
transpose()	Return the transpose of the symmetric block-sparse matrix

add (A)
Matrix addition of a matrix A to current matrix.
Parameters A: matrix
matrix A with same dimensions as current matrix. The matrix A can be a array, block_sparse matrix, or symmetric_block_sparse matrix. It must have the same block structure as the current matrix if the matrix is a block_sparse matrix or symmetric_block_sparse matrix.
Returns matrix
If A is symmetric_block_sparse, returns a symmetric_block_sparse ma-
trix. Otherwise, returns a block_sparse matrix.
get_submatrix(block)
Retrieve a particular block of the matrix

Parameters block : tuple

tuple (i, j) giving the index of the block
Returns block
either a array, a block_sparse matrix, or a symmetric_block_sparse matrix.
get_type (block)
Retrieve the type of a particular block of the matrix
Parameters block: tuple
tuple (i, j) giving the index of the block
Returns block type
either array, block_sparse matrix, or symmetric_block_sparse matrix.
qform ($y, z=$ None)
Let X be the current symmetric_block_sparse matrix, and y and z column vectors. When it is defined, this computes the quadratic form $\mathrm{y}^{\prime} \mathrm{Xz}$. If only y is provided, this computes the quadratic form y'Xy.

Parameters y: array

1D numpy array of same length as number of rows of current matrix
\mathbf{z} [array] 1D numpy array of same length as number of rows of current matrix. Default None.

Returns float
the value of the quadratic form $y^{\prime} \mathrm{Xz}$

```
to_dense()
```

Return the current matrix as a standard (dense) numpy array
Returns array

transpose()

Return the transpose of the symmetric block-sparse matrix
Returns symmetric_block_sparse
the current matrix, as it is symmetric
block_sparse.matmul (X, A)
Matrix multiplication between block_sparse and symmetric_block_sparse matrices, as well as matrix multiplication between a block_sparse or symmetric_block_sparse matrix and an array.

Parameters \mathbf{X} : matrix
The matrix X can be a block_sparse matrix, a symmetric_block_sparse matrix, or a array.
A : matrix

The matrix A can be a block_sparse matrix, a symmetric_block_sparse matrix, or a array. Note that the number of rows of A must match the number of columns of X . Furthermore, if X and A are both block_sparse or symmetric_block_sparse, then the column blocks of X must match the row blocks of A.

Returns block_sparse

the block-sparse matrix formed by matrix multiplication XA
block_sparse.dense_to_block_sparse (dense, blocks, symmetric, dtype=<type 'numpy.float64'>)
Convert a standard (dense) numpy array into a block_sparse or a symmetric_block_sparse matrix. Note this simply imposes a block structure onto the matrix so that it can interact with other block matrices. It does not take advantage of any sparsity in the input matrix.

Parameters dense : array

input matrix
blocks [list] list of [row_block_boundaries,col_block_boundaries], where each of row_block_boundaries and col_block_boundaries is a 1D array of integers, beginning with 0 , followed by the end boundaries of each block in increasing order
symmetric [bool] if True, returns a symmetric_block_sparse matrix; if False, returns a block_sparse matrix
dtype [numpy data type] the default data type of the returned matrix
Returns matrix
the current matrix as a block_sparse or a symmetric_block_sparse matrix

- genindex
- modindex
- search

Python Module Index
b
block_sparse, 5

A

add() (block_sparse.block_sparse method), 6 add() (block_sparse.symmetric_block_sparse method), 8

B

block_sparse (class in block_sparse), 5
block_sparse (module), 5

D

dense_to_block_sparse() (in module block_sparse), 10 $\operatorname{dot}()$ (block_sparse.block_sparse method), 6

F

frobenius() (block_sparse.block_sparse method), 6

G

get_submatrix() (block_sparse.block_sparse method), 6
get_submatrix() (block_sparse.symmetric_block_sparse method), 9
get_type() (block_sparse.block_sparse method), 7
get_type() (block_sparse.symmetric_block_sparse method), 9
M
matmul() (in module block_sparse), 9
N
norm() (block_sparse.block_sparse method), 7

Q

qform() (block_sparse.block_sparse method), 7 qform() (block_sparse.symmetric_block_sparse method), 9

S

symmetric_block_sparse (class in block_sparse), 7
to_dense() (block_sparse.block_sparse method), 7

```
    to_dense() (block_sparse.symmetric_block_sparse
        method), }
transpose() (block_sparse.block_sparse method), 7
transpose() (block_sparse.symmetric_block_sparse method), 9
```

